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Abstract

We introduce a new method for the recognition of partially occluded objects represented only by their contours. Object description,
which stems from the inflection point detection, approximates the object by polygon and is affine invariant. The matching algorithm is
simple and easy to implement.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Occluded object recognition; Polygonal approximation; Affine invariant
1. Introduction

1.1. Motivation

The recognition of a partially occluded object is a major
problem in computer vision. This problem has not been
sufficiently resolved yet, although many people have been
working on it for about last twenty years.

Partially occluded object recognition is needed for exam-
ple in forensic applications, medicine, astronomy, industry
applications etc. We present an example to illustrate the
use of the partially occluded object recognition algorithms.

Optical character recognition (OCR): Fig. 1 shows three
images of a Machine Readable Zone (MRZ). The MRZ is
a special part of any valid travel document made according
to the ICAO Document 9303. It stores all important infor-
mation about the holder in a special code. The MRZ is
developed in such a way that a machine can read it auto-
matically and check the holder’s identity thereby improving
security.
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Characters in the MRZ are printed by an infra red (IR)
absorbing material but sometimes it becomes necessary to
capture the MRZ by a simple visible light sensitive camera.
This raises a problem with the hologram labels which are
printed on every travel document to avoid forgery. These
labels make some characters discontinuous which results
in occlusion (see Fig. 1c). Another case of occlusion can
appear when the camera cannot capture the whole MRZ
into one image and some letters are cropped (see
Fig. 1b). In these cases we need an algorithm for partially
occluded object recognition.

Images in Fig. 1 were captured by a Voskuhler 1.3MPx
camera, where the MRZ was illuminated by the visi-
ble light. Images were obtained from an image acquisi-
tion product called DocuCenter, which is now widely
used at national airports, country borders and police
stations.

Many more examples can be found in the 3D computer
vision. Partially occluded object recognition is needed in
the fields of forensic applications, medicine and astron-
omy – objects very often overlap in these areas. The auto-
matized recognition of the occluded objects is usually the
first stage of the process. After the recognition we can
observe how the object changes in time.
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Fig. 1. Images from the DocuCenter: (a) A part of the MRZ correctly
captured. (b) The MRZ with cropped last characters. (c) Several letters are
made defective by the hologram reflection.
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1.2. Our research

The task of the partially occluded object recognition
algorithm is to match a single object against a database
of objects. An algorithm should be able to confirm,
whether the occluded and transformed single object is
one of the objects in the database. In this paper, objects
are represented only by their binary contours and an affine
transformation is considered because it is a good approxi-
mation of perspective transformation in most 3D computer
vision tasks.

We focus on a reliable description (features extraction)
of the object. To be robust to occlusion and to be invariant
to the basic transformation, the description should have a
local character. Moreover the description should be so
accurate that it should match just the object it represents,
and none other.

There are three basic approaches, that handle the prob-
lem of object description. The first approach is a string fea-
ture characterization of the objects (the string contains
several features for every point). The well known local
differential invariants from Weiss (1992) belong to this cat-
egory. Weiss suggested geometric invariants, which contain
high order derivatives and are sensitive to noise. Similarly
Pikaz and Dinstein (1995) used a total curvature descrip-
tion with a fast sub-curve matching, which also belongs
to this category.

The second approach is the object description by impor-
tant points such as minimal/maximal curvature points, or
curvature inflection points. Tsang et al. (1994) suggested
a polygonal approximation approach and used weighted
distance transform to get a similarity score. The Han and
Jang (1990) method stems from the Duda and Hart
(1973) polygonal approximation which was extended to
be faster and used a compatibility indexing for the match-
ing. Lamdan et al. (1988) used a hash table for a fast trip-
lets correspondence. Werman and Weinshall (1995)
introduced a new measure between two sets of points and
used it for object recognition.

The third approach is the boundary approximation by
splines used by Cohen et al. (1992, 1995). They use B-
splines for the approximation, because if a control points
correspondence is well defined, an affine transformed B-
spline becomes the B-spline again.
There are a few other papers, like the one by Turney
et al. (1985), suggesting algorithms that do not belong to
any of the above categories. Their method uses a saliency
measure(matrix of numbers) as a descriptor. A shock graph
from Siddiqi et al. (1998), codons from Richards and Hoff-
man (1985) and well known projective invariants from
Rothwell et al. (1991) are the other possibilities for object
description. Unfortunately the shock graph is not affine
invariant, codons give us a weak object description and
the projective invariants from Rothwell are not suitable
for complex objects. From the other approaches we should
mention the genetic algorithm of Kawaguchi and Nagao
(1998) and the wavelet based approach by Tieng and Boles
(1997). Mokhtarian and Abbasi (2002) use evolution CSS
image matching.

This paper contains a new method for object shape
description. The main advantage of the method is that it
creates the affine invariant description for objects without
computing parameters of the affine transformation. It is
based on detection of inflection points and can make the
description by inflection points as detailed as required. This
makes the description quite robust to both – additive noise
and inaccuracy in inflection point detection.

Our method can be categorized as the polygonal shape
approximation based on the inflection point detection, that
is it can be included in the second category described
above.

Let us assume, that our objects have a continuous and
piecewise smooth border. For a parametric curve of the
object border y = y(t), x = x(t) the inflection point is
defined:

€x _y � _x€y ¼ 0

Many papers have been published about the detection
and matching of dominant (especially inflection) points.
See for instance Ansari and Delp (1990), Teh and Chin
(1989) or Tsang et al. (1994). Much work has also been
done on the polygonal approximations. Most methods
are based on the Duda and Hartmethod (1973) but almost
none of them take into account the invariance to the affine
transformation.

Methods for dominant point detection are presented for
example in works of Mannocha and Canny (1992) and
Mokhtarian and Mackworth (1986).

The affine invariant coordinate system, which is the key-
stone of our object description , is mentioned in Section 2.
Section 3 shows how to obtain the representation by polyg-
onal approximation. The similarity score for object match-
ing and object matching itself is presented in Section 4.
Finally, experimental results, comparison with the Lamdan
method, real world experiments, and algorithm limitations
are mentioned in Section 5.

2. Affine invariant coordinates

Affine transformation can be defined by the following
equations:



Fig. 2. (a) A new object defined between two inflection points. (b) Affine
coordinates system. (c) If such a curve is a part of our contour, this
method of approximation is unusable.
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xt ¼ axþ by þ c yt ¼ dxþ ey þ f ð1Þ

where xt, yt are the transformed coordinates, x, y the origi-
nal coordinates and a, b, c, d, e, f the transformation
coefficients.

Let us take a digitized contour of the object. The con-
tour is naturally split into several parts by inflection points
I1, . . . , In. We will deal with the part of the contour that
begins and ends in inflection points. Let us assume that
the object given by (I1, part of border, I2, line (I2, I1)) is
convex (see Fig. 2b for an example and Fig. 2c for a coun-
ter example) and call such an object a shred.

The next step is to compute the center of gravity of the
shred. The center of gravity (Cg) is invariant to affine trans-
formation. The new affine coordinate system is defined by
the origin S and two vectors v1, v2 (see Fig. 2b). S is the
point between I1, I2, such that S = (I1 + I2)/2. Vectors v1,
v2 are defined as v1 = I1 � S and v2 = Cg � S.

Relative coordinates are preserved, that is the coordi-
nates of each point, which belongs to the border in the
new coordinates system is affine invariant.
3. Polygonal approximation

The shred description is based on the hierarchical shred
approximation in the affine coordinate system. The first
phase of approximation is the parallelogram defined by
vectors v1, v2. The first line of the parallelogram is parallel
to the vector v1 and goes via point S. The second line is also
parallel to the vector v1, but touches the shred on the other
side. The third and the fourth lines are both parallel to the
vector v2 and also touch the shred at separate points. The
points of intersection of these lines represent the corners
of the parallelogram (see Fig. 3a).

The second phase involves the four corners of the paral-
lelogram and the approximation is improved in the follow-
ing way. For every corner Bi take the vector vi defined as
Bi+1 � Bi�1. Take the line in the direction vi and such that
it touches the shred (it need not be tangential because
points I1, I2 do not define tangents). This line intersects
Fig. 3. (a) The basic parallelogram. (b) One step of the cutting algorithm.
(c) The approximation after the second phase.
the parallelogram(generally a polygon) and defines a new
approximation(see Fig. 3b). The procedure is described in
detail in the next paragraph.

The algorithm description:

1. Fix the number of iterations NoI
2. Let P: = {B1, . . . ,Bm} be the set of corners from the pre-

vious phase approximation.
3. For every point Bi do

(a) Compute direction vni = Bi+1 � Bi�1 of a new
tangent.

(b) Find the translation of the tangent, that means find
the exact equation of the tangent with vni direction.

(c) Cut off the polygon and get a new list of the corners
P 0.

(d) endfor
4. If the loop (steps 2–4) has been proceeded less than NoI

times, set P = P 0 and go to step 2.

The new boundary representation is compiled from the
corners in the list P, defined by the algorithm in the affine
coordinate system (see Fig. 5).

3.1. Discussion

In this section we discuss the advantages and the disad-
vantages of our boundary representation. The first advan-
tage is that the boundary can be described as accurately as
required. The approximation error decreases very fast. The
second advantage is, that the intersection of the lines of
the polygonal approximation is robust to noise although
the point of touch of the line and the original contour is
unstable.

Our object description has several disadvantages. The
main disadvantage is sensitivity to accuracy of inflection
point detection. However this is a general property of the
methods which use inflection points and fortunately the
sensitivity of our algorithm is not critical.

An experiment to illustrate In algorithm behavior under
these conditions is described in Section 5.5.

The second disadvantage is the error propagation. That
means, if some inaccuracy is made in the intersection find-
ing process, the error distributes to the next approximation
phase. The last disadvantage is that it is not possible to
detect whether the affine coordinates should be defined
by (v1,v2) or by (�v1,v2) (see Fig. 2b) because affine trans-
formation allows mirroring.
4. The similarity score

Let us take two shreds with its affine invariant polygonal
approximations ap1 and ap2, as described above. In this
section, we will show two simple penalty functions for
the shreds matching. At the end of this section we give
consideration to the matching algorithms for the complex
objects.
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4.1. The first penalty function

Let us define characteristic function F(i, j) for polygon
ap:

F ði; jÞ ¼ 1() ði; jÞ 2 ap

F ði; jÞ ¼ 0() ði; jÞ 62 ap

Let the functions F1, F2 be characteristic functions of ap1,
ap2. Define the penalty function F(ap1,ap2) to be a symmet-
ric difference F1 � F2.

The symmetric difference F(ap1, ap2) for polygons ap1

and ap2 can be also defined following way:

F ðap1; ap2Þ ¼
X

i2I

X

j2I

Rði; jÞ

where

Rði; jÞ ¼ 1() ði; jÞ 2 ap1 and ði; jÞ 62 ap2

Rði; jÞ ¼ 1() ði; jÞ 2 ap2 and ði; jÞ 62 ap1

Rði; jÞ ¼ 0() ði; jÞ 2 ap1 and ði; jÞ 2 ap2

Rði; jÞ ¼ 0() ði; jÞ 62 ap2 and ði; jÞ 62 ap1
4.2. The second penalty function

Compute the distance from every point of ap1 to the sec-
ond polygon and from every point of ap2 to the first poly-
gon. The sum of the distances is quite suitable penalty
function. Its complexity is O(n2) where n is the size of the
bigger set of ap1, ap2.

The second penalty function gave us worse discrimina-
bility than the previous one, but it is faster. We have chosen
the first penalty function in our experiments.

In fact, the penalty function has to be min(F(ap1,ap2),
F(ap1,mirror(ap2)), where mirror(ap2) is the mirror
reflection image of ap2 with the centerline (S,CG) (see
Fig. 2b). The penalty function has to be defined this way
because of considering affine transformation.

Two polygonal approximations ap1, ap2 are labeled as
corresponding if their penalty function is lower than given
threshold.

4.3. On matching the complex objects

We have proposed an algorithm to represent an object
by pieces of its borders – so called shreds – and a similarity
score to mutually match these pieces. Now we will intro-
duce a method to match the complex borders of the whole
objects based on proposed representation.

Let us take template object from our database O1. Its set
of inflection points I1 ¼ fi1

1; . . . ; in
1g divide the border into n

independent parts P 1 ¼ fp1
1; . . . ; pn

1g. Parts pi
1 have corre-

sponding lengths Li
1 in pixels and applies L1 ¼

P
iL

i
1 where

L1 is the length of the complex border. For every part pi
1 let

us denote the polygonal, affine invariant representation of
this part api

1. Finally, object O1 has its polygonal affine
invariant representation AP 1 ¼ fap1

1; . . . ; apn
1g.
Let us take the unknown object O2, set of its inflection
points I2 ¼ fi1

2; . . . ; im
2 g, independent parts P 2 ¼ fp1

2; . . . ;
pm

2 g and affine invariant representation AP 2 ¼ fap1
2; . . . ;

apm
2 g.
We try to match every part from AP1 to every part of

AP2 with the key condition, that the order of the shreds
must be respected. That means the parts ap1

1; ap2
1;

ap3
1; ap4

1; ap5
1 can for example correspond to ap2

2; ap3
2; ap4

2;
ap5

2; ap6
2 (only if ap1

1 corresponds to ap2
2, ap2

1 corresponds to
ap3

2 and so on). Cyclic correspondence and a mirrored
correspondence can occur. ap1

1; ap2
1; ap3

1; ap4
1; ap5

1 can corre-
spond to ap5

2; ap6
2; ap7

2; ap1
2; ap2

2 (cyclic correspondence) or
ap8

2; ap7
2; ap6

2; ap5
2; ap4

2 (mirror correspondence) or cyclic
and mirror correspondences can occur together.

For every set of corresponding pairs

M ¼ fapi1
1 � apj2

2 ; api2
1 � apj2

2 ; . . . ; apik
1 � apjk

2 g
We compute the similarity score for the set M

SSCMðO1;O2Þ ¼
1

Lt

X

m2i1...ik

ðLm
1 Þ � 100

The similarity score between two objects O1, O2 is
defined as the maximum of all similarity scores of the
allowed correspondences.

SSCðO1;O2Þ ¼ max
M
fSSCðO1;O2ÞMg
4.4. Occlusion

We still have not discussed the problem of the occlusion.
We have described the polygonal approximation algorithm
and the matching algorithm for object recognition. But if
the object is not occluded, many other object descriptors
that are more suitable can be used (e.g. moments). Occlu-
sion however makes them totally unusable.

In order to make possible recognition of the occluded
objects, we changed the matching algorithm from the pre-
vious sections slightly. Let us take two borders of objects
O1, O2 and their affine invariant representations AP 1 ¼
ap1

1; . . . ; apn
1;AP 2 ¼ ap1

2; . . . ; apm
2 . Again, every part of AP1

is matched to every corresponding part of AP2, respecting
the shreds order and cyclic and mirroring correspondence.
But unlike the previous case, every correspondence must
take into account the fact that some parts may be occluded.
For example correspondence ap2

1; ap4
1; ap5

1; ap8
1; ap9

1 to
ap1

2; ap3
2; ap4

2; ap7
2; ap8

2 is permitted (we assume that shreds
No. 1,3,6,7 from the first object and shreds No. 2,5 ,6
from the second object are occluded in this correspon-
dence). Missing shreds are permitted in cyclic and mirrored
correspondence as well. This extension of correspondence
makes the matching algorithm more time consuming but
applicable for the partially occluded object recognition.

For example if the inflection points I1, . . . , I5 were
detected on the object border and points I2, I3 were
occluded then the Shred(I4, I5) and Shred(I5, I1) will be
recognized correctly by our algorithm. This is because



Table 1
Penalty function of the original object and the object transformed by affine
transformation

o1 o1t1 o1t2 o2 o2t1 o2t2

o1 0 784 887 o2 0 760 874
o1t1 784 0 1187 o2t1 760 0 556
o1t2 887 1187 0 o2t2 874 556 0

o3 o3t1 o3t2 o4 o4t1 o4t2

o3 0 824 714 o4 0 1672 1010
o3t1 824 0 430 o4t1 1672 0 1722
o3t2 714 430 0 o4t2 1010 1722 0

The penalty function is not zero due to discretisation problem by affine
transformation when strong skewing presented.

Table 2
The penalty function of all original objects

o1 o2 o3 o4

o1 0 7824 16498 21441
o2 7824 0 19693 25002
o3 16498 19693 0 6117
o4 21441 25002 6117 0

Fig. 5. (a and b) The second and third phase of the contour approxima-
tion in the affine coordinates. (c) The original image in original
coordinates.
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missing inflection points have no influence on the distant
shreds.

5. Results

We have tested this algorithm on different types of
curves which were transformed by affine transformation.
In this section we show the separability of types of different
objects. Tests were first done on parts of objects which were
bordered by two inflection points.

Fig. 4 shows the images of four different objects and
their affine transformation. Tables 1 and 2 contain the val-
ues of the penalty function. The shortcut ‘‘o1’’ denotes the
first object. The shortcut ‘‘o1t1’’ denotes the first object
affine transformed by the first set of the coefficients.

Tables 1 and 2 show us an excellent discriminability of
the penalty function. In the worst case the penalty function
is approx. four times greater between two different shreds
than between original and affine transformed shreds.

5.1. The recognition of the complex objects

The recognition process consists of three steps, as men-
tioned before. The first step searches for the inflection
points and splits the border into segments according to
the inflection points (see Fig. 6). The second step is putting
every part of the border into affine invariant form as
described in the previous section. The third step is match-
ing these forms to each other.

For the first step, we used in our tests the automatic
inflection point detection which does not need any deriva-
tives and which is robust to noise.
Fig. 4. (o1–o1t2): The first object and its affine transformation, (o2–o2t2),
(o3–o3t2), (o4–o4t2): The second, third, fourth objects and their affine
transformation, respectively.
For every point of the border we can decide if the point
is inflection point or not in the following way: Take the
current point and insert a circle(with center in the current
point) into the image. The border splits the circle into
two parts – inner and outer part. The current point is the
inflection point, if the areas of the inner and outer parts
are the same.

The second step – putting every part of the border into
the affine invariant form – was undertaken exactly as
described in Section 3.

The third step – matching the complex objects was
described in the previous section.

Please see Fig. 7 for the tested objects and Table 3 for
the results. Numbers in Table 3 represent the percentage
of the part of the original border that was matched to
the border of the tested object.

If we wanted to recognize objects by maximizing the
percentage of the matched border, the recognition algo-
rithm would recognize all objects correctly. All borders
had approximately 600 pixels, and as we can see, it was
enough for the inflection point detection, but not enough
for the correct recognition of all parts of objects. We can
see at Table 3 that co1 corresponds to cot1 in 78.14% of



Fig. 6. Examples of two objects, on which inflection points were detected.

Fig. 7. (coi) are the original complex objects, (cotj) are the transformed
and partially occluded complex objects.

Table 3
The correspondence (as a percentage) between the original and trans-
formed and occluded objects

co1 co2 co3 co4

cot1 78.14 23.43 10.99 17.67
cot2a 0 65.36 0 0
cot2b 11.22 59.16 22.32 17.67
cot3 23.7 32.47 64.6 24.03
cot4 6.64 0 0 53.18

Fig. 8. (o1) corresponds to (ot1) where the teapot was transformed with
d = 0.4 and 50% of the contour was occluded, (o2) corresponds to (ot2)
where the snake was transformed with d = 0.5 and 50% of the contour was
occluded, (o3) corresponds to (ot3) where the plane was transformed with
d = 0.4 and 40% of the contour was occluded, (o4) corresponds to (ot4)
where the teapot was transformed with d = 0.2 and 40% of the contour
was occluded.
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the border, although the damage to the bone border was
not too severe. We would presume correspondence of
about 85%.

5.2. Extensive testing on simulated data

To get the statistically reasonable results, we have
suggested the following experiment. We took four test
objects – templates, we changed their contour randomly
and transformed them by affine transformation. The con-
tour was impaired by 0–50% and affine transformation
had coefficients a = 1, b = 0, d 2 (0, . . . , 0.5), e = 1. This
simplification of affine transformation is suitable, because
scaling and rotation have only a little influence on our rec-
ognition algorithm and could make the results ambiguous.

For every contour, for every d = 0, 0.1, 0.2, 0.3, 0.4, 0.5
and for every contour impairment of 0%, 10%, 20%, 30%,
40%, 50%, four realizations were made which differed in
the location of the contour impairment (these locations
were chosen randomly). The algorithm was tested on 576
images. You can see the original images and samples of
the transformed and damaged images in Fig. 8. For the
results see Table 4.

This method seems to be suitable up to skew d = 0.5 and
impairment of 20%. If the skewing is strong, the discretisa-
tion effect causes the worse recognition. There is no theo-
retic limitation, of course. This method and generally all
methods based on inflection point detection suffer from
inaccurate inflection point detection under affine transfor-
mation and low resolution.
5.3. Comparison to other methods

We have decided to compare our method to the
Lamdens method (1988), because these two are the most



Table 4
The recognition results

Skew/damage 0% 10% 20% 30% 40% 50%

d = 0.0 100 93.8 93.8 81.3 81.3 81.3
d = 0.1 100 87.5 93.8 75.0 81.3 81.3
d = 0.2 100 87.5 93.8 75.0 81.3 68.8
d = 0.3 100 87.5 87.5 81.3 81.3 68.8
d = 0.4 100 87.5 87.5 68.8 81.3 68.8
d = 0.5 93.8 87.5 93.8 75.0 87.5 68.8

For the object skewed with d = 0.1 and with 20% of the contour occluded,
the probability of correct recognition is 93.8%(from our four template
objects).
In the remaining cases the recognition process delivers false results – the
percentage of matched border is higher for another template – or the
similarity score for all object is zero.

Fig. 9. Samples of the images with additive noise.

Table 6
The mean of the penalty function between the original images and 100
realizations of additive noise to images with given r2
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similar. First let us point out the similarities and differences
between these two methods.

Both methods deal with affine transformation and need
to find out important points (such inflection points) for the
non-convex object description.

The first and the main difference between these two
methods is that our method computes approximations of
all shreds and matches these approximations for two
different objects by matching algorithm which is similar
to substring matching. The Lamdans method computes
parameters of affine transformation from two corre-
sponding shreds and verifies if the other important points
match.

The second difference (definitely less important) is the
meaning of the phrase ‘‘shred correspondence’’. In the
Lamdans paper the decision that two shreds correspond
is based on radial vectors similarity of the shreds. In our
paper it is a penalty function between shred approxima-
tions, what is the key to decision if two shreds correspond
or not. The shred approximation contains more informa-
tion about the shred and therefore leads to less false
matches.

We implemented Lamdans method and tested it on the
same images that were used for extensive testing (see 5.2
for details) of our method and with the same inflection
points. Results are available in Table 5. The Lamdans
method performs worse than our method, namely when
skewing becomes large. In such cases the detection of
inflection points becomes less accurate and this affects the
Lamdans method more than ours.
Table 5
The recognition success of the Lamdans method

Skew/damage 0% 10% 20% 30% 40% 50%

d = 0.0 100 83.3 75.0 70.0 63.6 33.3
d = 0.1 66.6 50.0 58.3 30.0 45.4 00.0
d = 0.2 66.6 66.6 58.3 20.0 45.5 22.2
d = 0.3 33.3 33.3 33.3 10.0 27.2 11.1
d = 0.4 66.6 41.6 33.3 20.0 45.4 22.2
d = 0.5 66.6 50.0 41.6 30.0 54.5 33.3
5.4. Robustness to additive gaussian noise

We carried out tests with objects corrupted by additive
noise. We must point out that more significant corruption
near inflection points can make the description very differ-
ent from the original one.

Our tests were based on adding gaussian noise to the ori-
ginal borders. Every point of the border was translated in
the direction normal to the border. The length of transla-
tion vector was determined by a random number of normal
distributions N(0,r2) – see Fig. 9.

We added gaussian noise with r2 = 1, 4, 16, 64 to each
of our four original images o1, o2, o3, o4 and made 100 real-
izations of every object and sigma. The results of matching
of the original and noise-corrupted images are presented in
Table 6.

Table 6 shows that the penalty function between any
tested shreds and the corresponding corrupted ones (in
the worst case corrupted by gaussian noise with r2 = 64)
is lower than the penalty function between any tested differ-
ent shreds (see Table 2). Considering the relatively low res-
olution of shreds, we can assert that our algorithm is
robust to additive gaussian noise.

5.5. Robustness to inaccurate inflection point detection

In this section we want to discuss robustness of the
polygonal affine invariant description to the inaccurate
detection of inflection points.

We took four objects (see Fig. 10) and we computed the
penalty function between the original object and the object
which had its beginning and end (the new inflection points)
o1 (174 · 237) o2 (233 · 295) o3 (276 · 244) o4 (358 · 106)

r2 = 1 1198.6 943.4 699.5 2506.8
r2 = 4 1811.9 1363.8 894.9 3494.3
r2 = 16 2696.9 1629.0 1387.6 4213.7
r2 = 64 3717.7 2073.4 1920.5 5678.6

The numbers in the brackets represent the real width and height of the
original images.
Please compare the penalty function from the graph to the penalty func-
tion between different shreds (Table 2).
You can see, that the penalty function between all tested different shreds is
greater than between shreds and noisy shreds although r2 was up to 64.
This shows very good stability to additive noise.
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in the highlighted areas. The border points of the high-
lighted areas were designed to be the original inflection
point plus or minus five percent of the length of the border
between the inflection points.

For the results of the penalty function see Fig. 11. The
x-axis represents (in %) how much the first and the second
inflection points were shifted together. The y-axis repre-
sents the penalty function. If the first inflection point was
shifted by 3% (plus or minus) and the second point by
Fig. 10. I1, I2 labels in every image the original points of inflection. We
computed the penalty function between the image with original inflection
points and the images, where the inflection points were chosen from the
highlighted interval. The size of the interval is 10% of the length of original
border.

Fig. 11. This graph corresponds to Fig. 10 and shows the penalty function
between the original object and the object which had its inflection points
shifted. The x axis represents (in a %) how much the first and the second
inflection points were shifted together. The y axis is the penalty function.
Diamonds represent o1, x-marks o2, triangles o3 and squares o4.
2% (plus or minus) the penalty function of the original
object and the object with shifted inflection points can be
found in the graph – where x is equal to 5.

The algorithm seems to be unaffected by small inaccura-
cies in inflection point detection. From Fig. 10 we could
guess that objects o1 and o3 would give us the worst
results, because of the bump near I2 (object o1) and near
I1 (object o3) which is the reason for the significant approx-
imation modification. This presumption was confirmed (see
Fig. 11).

5.6. Tests on the real objects

We tested our algorithm on the real objects such as
knife, screwdriver, scissors, spoon, axe, pliers, stopper,
etc. There were eleven different objects in the template
database. Every object consists of 4–8 shreds. Four shreds
have spoon, screwdriver or stopper and eight shreds has
pliers.

We took fifteen pictures of every object and although we
had almost uniform red background, segmentation was
correct in 10–13 cases for every object. The corrected
images were our input files in this test.

We used camera with 3MPixels with a macro mode. The
objects had length and width from 10 to 50 cm and depth
from 3 mm to 3 cm. The macro mode uses focal length
from 10 to 40 cm. The limit for camera inclination was
45�. These conditions had three different implications.

• Complex object would not appear whole in the focus
plane – its border was not detected accurately.

• The object image is deformed by strong perspective
transformation. See Fig. 13a1 and b1.

• When the object has non-zero depth its contour is not,
from different camera inclination angles, created by
the same edges. See Fig. 13a2 and b2.

Despite these bad conditions, we think that affine trans-
formation still would be a good approximation of perspec-
tive transformation, which deforms our images.

The problem of additional edges, which create different
contours for different camera inclinations, when the object
has non-zero depth, is not so critical. We have to realize
that in many cases the additional edges have the similar
shape to the original ones and the inflection points are pre-
served too. However, this does not hold for the piers.

As we mentioned above, we made 10–13 pictures of
every object. The occlusion was from 0% up to 50% of
the object border. For non-occluded, only perspective
transformed objects, the recognition ratio was 88.9%.
When the occlusion was 50% of the length of the border,
the recognition ratio was 43.1%. As we suspected the
worst recognition ratio gave object with small number of
shreds and hardly detectable inflection points (cooking
spoon – Fig. 12d2) and objects with the large depth
(pliers – Fig. 12a1). On the other hand the flat tool
with higher number of inflection points, which were well



Fig. 12. (a1)–(d1) Several examples of tested objects. (a2)–(d2) Examples of several segmented objects.

Fig. 13. (a1) The original image of the stopper. (b1) The image of the
stopper under strong projective transformation. (a2) Original image of the
pliers. (b2) The pliers contour change is caused by the pliers non-zero
depth and relatively big angle of the camera inclination. The white curves
on image a2,b2 highlight the places where the contours were most
changed.
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detectable (knife – Fig. 12a2), was recognized correctly in
almost all the cases.

Although we used relatively small number images, the
computation of the results took huge amount of time.
The explanation is easy. Every picture has three mega
pixels. The object border length was approximately 2000
pixels. All the preprocessing – dynamic threshold, border
detection, border smoothing, inflection point detection
and getting shred representation, requires many time con-
suming (especially in Matlab) operation. Let us assume
that object A consists of a shreds and object B consists of
b shreds. The substring matching algorithm takes much
time too, because its complexity is huge as we mentioned
in Section 4.3.

6. Conclusion

In this paper we have introduced a new method which is
suitable for occluded object recognition, if the objects pos-
sess inflection points. We suggested a simple penalty func-
tion and we have presented the results of the recognition,
comparison to the Lamdans method, robustness to addi-
tive gaussian noise and to inaccurate detection of inflection
points.

Further development of the algorithm would involve the
automatic determination of the number of iterations of the
approximation algorithm. The new way of matching
according to the different iteration level approximations
of objects is also encouraging.
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